Homoclinic, subharmonic, and superharmonic bifurcations for a pendulum with periodically varying length

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillations of a pendulum with a periodically varying length and a model of swing

Qualitative analysis of a pendulum with a periodically varying length is conducted. It is proved that there are two periodic solutions having a prescribed amplitude A(n and a period 1 which is an even multiple k of the excitation period. Stability analysis is carried out for the principal parametric oscillations (k"2). In this connection it is shown that such a pendulum cannot serve as a mathem...

متن کامل

Integrability of Superharmonic Functions and Subharmonic Functions

We apply the coarea formula to obtain integrability of superharmonic functions and nonintegrability of subharmonic functions. The results involve the Green function. For a certain domain, say Lipschitz domain, we estimate the Green function and restate the results in terms of the distance from the boundary.

متن کامل

Homoclinic Bifurcations

1. Introduction. We say that a one-parameter family of diffeomorphisms ip^: M — • M, p G R, has a homoclinic bifurcation, or a homoclinic tangency, for p = 0 if ipo has an orbit of nontransverse intersection of a stable and an unstable manifold, both of the same hyperbolic fixed point (or periodic point), which splits, for p > 0, into two orbits of transverse intersection of these stable and un...

متن کامل

Homoclinic Bifurcations for the H

Chaotic dynamics can be eeectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We nd a bound on the parameter range for which the H enon map exhibits a complete binary horseshoe as well as a subshift of nite type, and study these numerically. We classify homoclinic bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2014

ISSN: 0924-090X,1573-269X

DOI: 10.1007/s11071-014-1404-3